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The effect o f  stationary random perturbations in the electric current on the fluctuation o f  active ion 
concentration in the electrolyte in electrolysers amenable to CSTER-based  analysis is examined via 
the theory of  stochastic differential equations. The approach to random fluctuations in other inputs 
can be readily extended. 
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active ion concentration; co its initial 
value in a batch electrolyser; c~ its inlet 
value in a CSTER 
Faraday's constant 
electric current 
imaginary operator; i ~ ~ ( -  I) 
(cross) covariance function of random 
variables V and W 
auto-covariance function of random 
variable W 
volumetric flow rate 
power spectrum of random variable W 
time; tl and t 2 arbitrary time instants; tm 
mean residence time; tR rise time 

X 
Y 
z 

t/ 

~w 
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active electrolyser volume 
random input signal 
random output signal; conversion 
valency 
lumped parameter defined under 
Equation 2 
lumped parameter defined under 
Equation 2 
parameter in the Markovian and 
quasi-Markovian input autocovariance 
function 
current efficiency 
mean (or expectation) of random 
variable W 
variance of random variable W 
frequency 

1. Introduction 

The behaviour of tank electrolysers in the presence of 
random perturbations occurring in their operating 
variables (inflow electrolyte concentration, current, 
etc.) has been considered only to a limited extent 
in terms of signal recognition techniques [1] and 
Markov-chain theory [2], with the primary purpose of 
parameter identification, and the finding of equivalent 
analytical models. A complementary - and equally 
important - problem is the prediction of electrotyser 
behaviour when a random perturbation in an input 
variable has certain stochastic characteristics: under 
appropriate conditions the stochastic characteristics 
of the output variables (e.g. outlet electrolyte con- 
centration) can be predicted by means of an analytical 
model. The purpose of the current paper is to present 
such an approach by considering specifically how 
stochastic perturbations in the electric current affect 
the conversion of an active ion in the electrolyte to the 
product of an electrode reaction. Three systems - a 
batch electrolyser, a continuous-flow electrolyser, and 
a two-element continuous-flow electrolyser cascade - 
serve as working examples. It is assumed that the 
CSTER concept [3-6] can be employed at least approxi- 
mately as the mathematical tool for the modelling of 
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electrolyser behaviour in order to arrive at relatively 
unencumbered analytical results. The findings are 
expected to be useful for the rational design of tank 
etectrolysers. 

2. Theoretical background 

The structures of interest are ordinary linear differ- 
ential equations 

__dY = X(t) for t >~ 0 (1 )  
dt 

d Y  
d--[ + coY = X(t) for t ~> 0 (2) 

with initial condition Y(0) = 0. As discussed in the 
related literature (for example, [7] and [8]), if X(t) is 
random, solutions of Equations 1 and 2 exist in the 
mean-square sense. In this manner, #j. and #x can 
replace Y and X, respectively, and the covariance 
functions (see Appendix 1) Kxr(tt, t2) and Kry(h, t2) 
are obtained by solving differential equations iso- 
morphic to Equations 1 and 2, specifically, 

OKxy(h, t2) 
= Kxx(t , ,  t2) Kx,,(tl ,  0) = 0 

~tz 

(3a) 
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c3Krr(/l, t2) 
Krr(0, t2) = 0 

(3b) 

for a system governed by Equation l, and 

eKxAl , 
(}t 2 

+ o : K x y ( t l ,  t2)  = X x x ( t l ,  t2)  

K x y ( t l ,  O) -~. 0 

q-9:Kry(tl, t2) = Kxr(ti,  t2) 
8 K y y ( t i ,  12) 

8ti 

(4a) 

Krr(0, t2) = 0 (4b) 

for a system governed by Equation 2. Complete sol- 
ution involves the splitting of  the integration pro- 
cedure in two steps, covering the time domains 0 ~< 
t 2 ~ t~; t2 ~> h for Equations 3a and 4a, and 0 ~< 
h <~ t2; h >~ t~ for Equations 3b and 4b. The con- 
comitant initial conditions are, therefore, the values of  
Kxy(h,  h )  and Krr(t2, t2) for the second domains. 
The long-term behaviour of the autocovariance func- 
tion is directly related to the standard deviation of  the 
output Y(t) around its mean value of steady-state 
conditions: 

= ( S )  

where 

lim (h, t2) = Krr(z)  (6) 
t2~oo 

In this manner, the autocovariance function repre- 
sents a measure of dispersion of the system response to 
a stationary random perturbation and it is a prime 
characteristic of  stochastic system performance. A 

selected number of autocovariance functions have 
been assembled in Table 1: for the system described by 
Equation 2, Krr  is an extremely complex function of 
time instants h and tz, in the case of Markovian 
and other input-covariance functions Kxx, hence it is 
omitted. On the other hand, the long-time behaviour 
in these cases may be established at relative ease 
by replacing the path via Equation 6 with the path 
involving the power spectrum, i.e. the Fourier integral 
of the covariance function, as shown in Appendix 2. 
The results for the systems discussed in this paper are 
summarized in Table 2. Equation 1, as a pure inte- 
grator, does not reach a steady state and is excluded 
from the Table; conversely, the equation 

d 2 Y d Y dX 
dl 2 + a~ ~-[ + a 2 Y = b o - ~  -t- bx X (7) 

is included on account of  its governance of  the 
behaviour of the two-element CSTER cascade, in 
contrast to the analytical expressions for Kry(O) in the 
case of a first order system, the output standard devi- 
ation has to be obtained by a numerical solution of the 
Krr(0 ) integrals (the solution for a quasi-Markovian 
input shows an interesting application of sine and 
cosine integrals). 

3. Application to electrolyser behaviour 

3.1. Batch electrolyser 

Under isothermal conditions, the mote balance in 
terms of the active ion concentration 

dc [ 
- V R ~ /  = q T ?  (8) 

Table 1. Autocovariance functions of output Y(t) for selected forms of random inputs X(t) 

Sys tem Kxx( z  ) K r r ( t l ,  t2) 

2 Equation 1 axa(Ze 
(white noise) 

2 
0-xtl ; 0 ~< tl ~ t 2 

2 . 
0-xt2 , t 1 ) t 2 

0-2 ~ - 7lzl o.2 
(Markovian) ~?x I2tl 

2 ~2 0-Xf.--Y 

(Quasi-Markovian) 

1 

_ 1 (e-'n~ + e-rt2 _ e-~(q%)) _ 1] l I t .  
7 3 

0-xw/(~)Itlerf(tl~/(7))2 7 - - @ ( 1 -  e-~l~)l 0 ~< tl~<Z~= 

2 y [q erf (q~/(7)) -- (q -- t 2) erf(t I -- t2),ff(7) ) 

t (e_Ttl 2 _ g_r(q_t2)2)]; tI >~ t2 + >,/'z 

Equation 2 0- 2 
8- =t2 s inh  (af t ) ;0  ~< l I ~-( t 2 

2 
% [1 8--20ct2]~ -~(t]-t2)" t I >~ t 2 
2c~ 
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Table 2. Long-time behaviour o f  the output autocovariance function for  selected forms o f  random inputs 

System Kxx(z ) Kry(z) Krr(O) 

G Equation 2 ozx6(z) ~ e-~l,I 
2a 2c~ 

2 -?izt 0-2 8-7['~1 2 O-x~ - -  ~ 8-cr fix 

2 --?z2 2 ~:e gw2147 0-x~: ~7 x COS 'tO) 

, , /~y  Jo ~z + f.o 2 
&o 

2~ 7 

Equation 7 2 f 2  2 

~r~6(z) 2~. )0 (a2 - m2) z + ~ o  z 

o-2g-'l~l 2a2), [~o (b~o 2 + b~)e i'r do 
~- ao [a 2 - ( 0 2 )  2 -f- a~oJ:z][y 2 q- (.0 2 ] 

2 -,,r2 
O-x~ , 

4(~v) 3o ( a 2 - o 2 )  + a 1 %  

To obtain Krr(0) set ~ = 0 in all 
three integrals 

2 /'x - t2 
*eft c(x) -= 1 - ~--~ J0 e dt [91 

m a y  be rewrit ten for  convers ion Y as d Y/d t  = X( t ) ,  

as given in Equa t ion  1, where Y =_ (Co - c)/co and 
X =- tlI/zFco ~ .  As indicated in the previous  section, 
Equa t ion  1 has a solution in the mean-square  sense, 
i.e. the mean  value o f  the convers ion  is ob ta ined  by  
solving the i somorphic  equat ion  

d#r 
= #x  = rl#flzFco VR 

dt  

to 

Fur ther ,  since 

~ r  = #xt  (10) 

0 . 2  "~ 2 "  = ~ - ~ d ( z F c o G )  2 (11) 

the forms  of  the au tocovar iance  funct ion given in 
Table  1 apply  equally to current  and the variables  X. 
Typical  numerical  values shown in Table  3 depict  the 
evolut ion of  the convers ion au tocovar iance  funct ion 
with increasing t ime whose square- root  is the stan- 
dard  deviat ion of  the convers ion a round  its mean  

Table 3. The evolution of the conversion autocovariance function in a 
typical batch electrolyser (c i = 3molm-3; z = 2, ~ = 0.16m3; 
#~ = lkA; a~ = 25 A z) employed for trace metal recovery; t l = 
t z = t  

Time 
(rain) 

White noise Markovian Quasi-Markovian 
(y = 0.02 rain- 1 ) ('f = 0.02 min 1 ) 

0.1 0.001025 0.0003239 0.0004528 
1.0 0.003240 0.0035288 0.004528 

10.0 0.010247 0.031359 0.040000 
60.0 0.025100 0.238960 0.125658 

100.0 0.032404 0.244130 0.162234 

Asymptotic tendency: Krr.(t) ~ 0.00105t -- 0.0525 (Markovian) 
Krr(t ) ~ 0.00026319t -- 28,21 
(Quasi-Markovian) 

(Equat ion  10) at  any given time. The  largest increase 
in dispersion with t ime is exhibited in the case of  the 
M a r k o v i a n  current  indicating the necessity o f  ter- 
minat ing  batch  electrolysis in such a case after  a shor t  
time, in order  to avoid relatively large f luctuations o f  
pe r fo rmance  f rom batch  to batch.  

(9) 3.2. Continuous f l o w  electrolyser ( C S T E R )  

Under  isothermal  condit ions,  the mole  balance 

dc r/I 
V R - ~  = Qci - Q c -  z-F (12) 

m a y  be rewritten, in a fashion similar to the ba tch  
electrolyser, as 

d Y  
- - + ~ Y  = x = f l I  (2) 
dt 

where :~ -= Q~ VR and fl - tl/zFci VR; c~ is recognized 
as the reciprocal  of  the mean  residence time of  fluid 
elements in the tank.  Due  to the mathemat ica l  com- 
plexity of  the evolut ion equat ions  for K r r ( t  ,, t2), 
Table  4 contains  only white noise-excited behaviour ,  
as a funct ion o f  the electrolyte volumetr ic  th roughpu t  
rate. The  evolut ion relat ionship in the case o f  white- 
noise f luctuations in the current  is given by 

2 

= ~ (1 - e -2~) 0 3 )  Krr ( t ,  t) 
ZC2 

The times corresponding to the rise t ime tR = 1/2c~ 
and mean  residence t ime t m = 1/0~ serve as convenient  
points  of  reference, where 

Kyy(tR,  tR) ~ 0.6321ma~ (14a) 

and 

K y r ( G ,  tin) ~ 0-432tma]- ( t4b)  

demons t ra te  the effect of  flow rate: as Q increases, c~ 
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Table 4, Parameters ~(' the transient behaviour of a CSTER under 
white-noise current fluctuation: c,~ = 3 tool m-  3 ; z := 2; V R ~= 0,16 m3; 
& = lkA;o~ = 25A z 

Q ~ t~ t~ ~ r  
(m ~ h- t ) (rain- ~ ) (min) (min) 

7 0.729 0.686 1.372 0.002135 0.002493 
8 0.833 0.600 1.200 0.001995 0.002334 
9 0.937 0.534 1.067 0.001881 0.002200 

t0 1.041 0.480 0.961 0.001784 0.002087 

becomes larger, the mean residence time and rise time 
become smaller, the evolution becomes faster, result- 
ing also in a smaller fluctuation of  the conversion 
about its mean. This result shows clearly that relatively 
tong transient dynamics in a CSTER are deleterious 
from the point of  view of performance, 

The long-term behaviour of the CSTER perform- 
ance is shown in Table 5, where the conversion fluc- 
tuation range defined as/z v -t- ,fK-rr (0) is tabulated as 
a function of  flow rate and the reciprocal of  the mean 
residence time. The mean conversion is obtained by 
straightforward integration of  Equation 2 (in the 
mean-square sense) as 

bq' = #x(1 - ~-~') (15a) 

and it follows that after a sufficiently long time lapse, 

/ix 
/~: , - - .  ( 1 5 b )  

3.3. Two-e l emen t  C S T E R  cascade 

The isothermal mole balance equations 

dc~ rh Il (16a) 
Vl ~ = Q q  - QCl - z f  

dc2 Y/212 (16b) 
V2-d7  = Qcl - Qc2 z F  

govern the behaviour of the system. In terms of  
elements conversions gl and I72 and related lumped 
parameters ~l ~ Q/V1; cq =- Q/V2; fll =- t]2/7"tgciVt 
and fi2 "-= ~h/zFq 1~, the relationship 

d2 Y2 dY2 
dt  2 + (~ + ~ ~ + ~lo~2 Y2 

dS~ 
: ~fi~I, + <fi::~ + f12-aT (17) 

Table 5, Long-term performance of the CSTER* 

relates conversion from the second CSTER to time. tn 
the practical case of  I~ = Ia and in terms of  the 
additional lumped parameters a~ - r + ~2; a2 -~ 
0{1~2, bo -= f12 and bl ~ ~2fli + cqfi2, the conversion 
autocovariance function for the second CSTER is 
obtained at sufficiently long times by ~:aking the 
inverse Fourier transform of its power spectrum: 

. . . .  (az  - co~) ~ + a~co ~ 

( 1 8 )  

where S~(oo) is the power spectrum of  the current; in 
Table 2 specific forms of  the integral in Equation I8 
are shown for the random current perturbations con- 
sidered. The effect on overall cascade performance is 
illustrated in Table 6; the analysis of first element 
performance follows closely the single CSTER case 
and is not repeated here, 

4.  D i s c u s s i o n  

The numerical illustrations demonstrate the strategy 
of  estimating the effect of  random perturbations in the 
current on the performance of  certain tank electrolyser 
systems. The approach can be readily extended to 
various configurations: in the specific case of  an 
N-element CSTER cascade for example, the integral 
expression in Equation 18 carries an N-th order poly- 
nomial of  co in the denominator and an (N - l)st 
order polynomial of  co in the numerator. The numeri- 
cal handling ofintegration would pose little additional 
encumbrance for a microcomputer, unless N is very 
large (an impractical case). 

The numerical similarity of  the oscillation ranges 
shown in Tables 5 and 6 is fortuitous inasmuch as the 
range is determined by the magnitude of  the parameters 
of  the current autocovariance functions. Depending 
on these numerical values, the oscillation ranges may 
be widely different: a systematic numerical simulation 
of performance, beyond the scope of  this paper, would 
enable the designer to identify random input functions 
against which appropriate control action is required 
to suppress unacceptably large fluctuations of  the exit 
conversion. 

The method of  attack can be applied in a similar 
fashion to random perturbations in other inputs, for 
example, the inlet electrolyte concentration in a flow 
electrolyser. I f  the current remains constant, the 

Q et #~, 
(m 3 h - t  ) (min -~) 

Range of conversion ,fluctuation 

White-noise Markovian Quasi-Markovian 
7 = O.02min-t ~' = O,02min-I 

7 0.729 0.889 
8 0.833 0.778 
9 0.937 0.692 

10 l ~041 0.622 

0.886-0.892 0.885-0.893 0.886-0.892 
0.775-0.780 0.774-0.782 0.776--0.780 
0.690-0.694 0.688-0.696 0.690--0.694 
0.620-0.624 0.6t9-0.625 0.620.0.624 

*Numerical parameters as in Table 4. 
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Table 6. Long-termperformanee of a two-element CSTER cascade. (c~ = 3molto-3; z = 2; V~ = V 2 = 0.16m3; #i = 500A; a} = 6.25A 2) 

Q ~ ltY~ tzY~ Range of conversion fluctuation* 
(m s h -I) (rain -~) 

White-noise Markovian Quasi-Markovian 

7 = O.02min-t 7 = O.02min-I 

7 0.729 0.444 0.888 0.886-0,890 0.884-0.892 0.882-0,894 
8 0.833 0.389 0 . 7 7 7  0.775-0,779 0,773-0.781 0.772-0.782 
9 0.937 0.346 0 . 6 9 1  0.689-0,693 0.687-0.694 0.686-0.696 

10 1,041 0.311 0.622 0.620-0,624 0.619-0.625 0.617-0.627 

*The integrals shown in Table 2 were evaluated by a Romberg quadrature method [10] to the upper limit of a) = 200, ensuring a minimum 
of four decimal accuracy. 

forcing function X(t)  in Equation 2 comprises the 
constant term qI /VzF and the randomly fluctuating 
term c~c~. The solution of  Equation 2, for initial con- 
dition t = 0 c = C, in terms of  mean quantities: 

r/I 
- -  (1 - e -~') (19) 

#c = #q zFVR~ 

is obtained via conventional techniques of  integrating 
first order linear differential equations. If both C and 
I are random inputs with means #c~ and N, respectively, 
the solution of Equation 2 may be written as 

t/y+ (1 - e -~') (20) 
#c = #~ z F V ~  

The treatment of the associated covariance functions 
follows similarly. 

Finally, it is worth noting that although X(t)  is 
stipulated to be a stationary random process (strictly 
speaking, wide-sense stationary (WSS), i.e. its station- 
arity involves only its means and covariance func- 
tions), the zero initial conditions appearing in the 
solution of  Equations 2-4 create transient nonstation- 
arities, which vanish, however, at large times if the 
system reaches a steady state [8]. This can be seen also 
by the output autocovariance function reaching a 
time-independent form K~y(z), indicating that tank 
electrotysers subjected to stationary random pertur- 
bations are asymptotically WSS. Batch electrolysers 
do not belong to this class since they do not operate 
under steady-state conditions. 

5. Conclusions 

The foregoing analysis portrays the application of an 
elementary theory of stochastic processes to perform- 
ance studies of electrolysers. The full scope of  this 
approach, relatively new to electrochemical engineer- 
ing, will require a thorough exploration in future 
investigations. 
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Appendix 1 

The covariance function of  real random variables X 
and Y with means #x and # >  respectively, is defined 
a s  

Kxy(t~, t2) = E[(X(h)  - ~Lx(t~))(Y(t2) - #y(h))] 

(A.1) 

where E is the expectation operator. The definition of  
the autocovariance function of a real random variable 
J( follows directly: 

Kxx(t , ,  tz) = E[(X(tl) - #x(t , ) )(X(t2)  - #x(t2))] 

(a.2) 

If the process involving the random variable X is 
stationary [i.e., X( t  + ~) has the same probability 
distribution function for all z], Equation A.2 may be 
simplified to 

Kxx = E(X(t  + z)X(t)) - #2 (A.3) 

where the expectation term is known as the correlation 
function of  random variable X. The important cor- 
ollary for the variance: 

2 Kxx(O) E(X 2) 2 (A.4) ~ = = -- #x 

is a fundamental theorem in probability theory. 

Appendix 2 

Let a stationary linear system be represented by the 
differential equation with constant coefficients. 

N d k y ~ d/X 
ak ~ = z., b~ dt j (A.5) 

k=0 j = 0  

and let the power spectrum of  the input be Sx(co). 
Then, the power spectrum of  the output may be 
expressed [9] as 

/~o bj(iogy 2 

Sy(oo) = ik~0 ak(ic~ 2 Sx(o9 ) (A.6) 

It follows that the asymptotic form of  the output 
autocovariance function, a measure of  long-term 
behaviour, may be obtained from the known input 
autocovariance function in two steps. First, Sx(oo ) is 
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o b t a i n e d  by  F o u r i e r  t r a n s f o r m a t i o n :  

' f+2 Sx(co)  = ~7c - K ~ x ( r ) e  io,~ d r  (A.7)  

then  Sy(~o) is o b t a i n e d  b y  E q u a t i o n  (A.6) ,  w h o s e  
inverse  F o u r i e r  t r a n s f o r m  yie lds  

= f + ~  Sy(co)g ~~ dco (A.8)  Kry(Z)  
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